想要更直观地了解连廊铰支座直接厂家产品吗??产品视频,带你走进产品世界


以下是:连廊铰支座直接厂家的图文介绍


    支座具有传力可靠,各向转动性能一致,不仅具备盆式橡胶支座承载能力大、水平位移大的特点,而且能适应大转角的需要,适用于宽桥、曲线桥。由于承压部件不使用橡胶件,不存在橡胶低温脆性等影响,因此特别适用于低温地区。本系列橡胶支座执行标准为:GB/T17955-2000《球型支座技术条件》。 通常支座由上支座板、不锈钢、平面聚四乙烯板、球面板、球面聚四乙烯板、橡胶拦圈,下支座板组成。它的位移是由上支座板与平面四氟板之间的滑动来实现。在橡胶支座转动时,首先是发生在球面板与球面四氟板处,然后才在平面四氟板上发生滑动。A、支座反力(坚向承载力)可分为16级:100015002000250030004000500060007000800090001000012500150001750020000kN,大于20000kN时单独设计加工。B、设计转角分为 0.01 0.0150.02radC、设计位移量:顺桥向:10002500KNe=±50mm;30001000kN;e=±50mm,±100mm和±150mm。横桥向:采用DX多向活动支座,e=±20mm。设计位移量根据工程需要可进行变更。



    支承结构与支承方式,目前在很多工程中,网架(网壳)一般由钢构公司根据事先假定的边界约束条件进行设计,再将他们算出来的支座反力作为外加荷载作用到下部支承结构中。把网架(网壳)和下部支承结构分开计算,网架支座相对于下部结构的位移虽然可以通过弹性约束方法模拟,但是由下部支承结构变形带来的支座沉陷等支座本身的变位很难估算准确,算出来的结构内力在某些情况下会与实际情况差别较大,可能会给工程留下隐患。下部结构可能是柱,也可能是梁,也可能是其他结构形式,不仅刚度是有限的,而且具体工程刚度差异可能很大,在这种假定条件下,算出来的杆件内力、支座反力及下部结构内力与采用网架支座刚度为实际刚度且上、下部结构共同工作的力学模型所计算出来的结果肯定是不相同的。




    万向支座是一种新型支座,因其承载能力高、转角大、转动灵活、转动力矩与转角无关等优点,可广泛应用于各种跨度、各种类型的桥梁,特别适用于大跨度桥梁及宽桥、曲线桥、坡道桥等构造复杂的桥梁。支座工作原理和构造:球型支座的水平位移是由上(支座)滑板与中座板上的平面四氟板之间的滑动来实现的。另外,通过在上座板上设置导向板()或导向环来约束支座的单向或多向位移,可以制成单向活动球型支座和固定球型支座。

球型支座的转角是由中座板的凸球面与下座板上的球面四氟板之间的滑动来实现的。通常由于支座的转动中心与上部结构的转动中心不复合,而在中座板和下座板之 间形成第二滑动面。根据上部结构与支座转动中心的相对位置,球面转动方向可以与平滑动方向一致或相反。如果两个转动中心复合,则无平面滑动。




眉山上沅工程技术企业主要产品有 橡胶支座等产品。眉山上沅工程技术的开发紧追时代潮流,不断推出更新颖、更优质的眉山上沅工程技术系列产品。



    平面为圆形或多边形的网架会存在斜边界(3.1a)。矩形平面网架利用对称性时,对称面也存在斜边界斜边界有两种处理方法,一种是根据边界点的位移约束情况设置具有一定截面积的附加杆,如节点沿边界法线方向位移为零,则该方向设一刚度很大的附加杆,截面积A=106~108(3.1.b);如该节点沿边界法线方向为弹性约束,则调节附加杆的截面积,使之满足弹性约束条件。这种处理方法有时会使刚度矩阵病态。另一种方法是对斜边界上的节点位移做坐标变换,将在整体坐标下的节点位移向量变换到任意的斜方向,然后按一般边界条件处理。对于复杂的下部支承系统,网架(网壳)支座相对于下部结构的位移通过弹性约束方法不易模拟,支座节点的边界条件很难确定,此时可以借助相关的空间结构有限元分析与设计软件,直接将支承结构上部网架(网壳)一起进行整体建模、计算分析。这样不必另外计算支承结构的等效弹簧刚度,也避免了简化为弹簧时的误差,计算效果好。



点击查看上沅工程技术的【产品相册库】以及我们的【产品视频库】